(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
*(x, *(y, z)) → *(otimes(x, y), z)
*(1, y) → y
*(+(x, y), z) → oplus(*(x, z), *(y, z))
*(x, oplus(y, z)) → oplus(*(x, y), *(x, z))
Rewrite Strategy: FULL
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
*(+(x, y), z) →+ oplus(*(x, z), *(y, z))
gives rise to a decreasing loop by considering the right hand sides subterm at position [0].
The pumping substitution is [x / +(x, y)].
The result substitution is [ ].
(2) BOUNDS(n^1, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
*'(x, *'(y, z)) → *'(otimes(x, y), z)
*'(1', y) → y
*'(+'(x, y), z) → oplus(*'(x, z), *'(y, z))
*'(x, oplus(y, z)) → oplus(*'(x, y), *'(x, z))
S is empty.
Rewrite Strategy: FULL
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
TRS:
Rules:
*'(x, *'(y, z)) → *'(otimes(x, y), z)
*'(1', y) → y
*'(+'(x, y), z) → oplus(*'(x, z), *'(y, z))
*'(x, oplus(y, z)) → oplus(*'(x, y), *'(x, z))
Types:
*' :: otimes:1':+' → oplus → oplus
otimes :: otimes:1':+' → otimes:1':+' → otimes:1':+'
1' :: otimes:1':+'
+' :: otimes:1':+' → otimes:1':+' → otimes:1':+'
oplus :: oplus → oplus → oplus
hole_oplus1_0 :: oplus
hole_otimes:1':+'2_0 :: otimes:1':+'
gen_oplus3_0 :: Nat → oplus
gen_otimes:1':+'4_0 :: Nat → otimes:1':+'
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
*'
(8) Obligation:
TRS:
Rules:
*'(
x,
*'(
y,
z)) →
*'(
otimes(
x,
y),
z)
*'(
1',
y) →
y*'(
+'(
x,
y),
z) →
oplus(
*'(
x,
z),
*'(
y,
z))
*'(
x,
oplus(
y,
z)) →
oplus(
*'(
x,
y),
*'(
x,
z))
Types:
*' :: otimes:1':+' → oplus → oplus
otimes :: otimes:1':+' → otimes:1':+' → otimes:1':+'
1' :: otimes:1':+'
+' :: otimes:1':+' → otimes:1':+' → otimes:1':+'
oplus :: oplus → oplus → oplus
hole_oplus1_0 :: oplus
hole_otimes:1':+'2_0 :: otimes:1':+'
gen_oplus3_0 :: Nat → oplus
gen_otimes:1':+'4_0 :: Nat → otimes:1':+'
Generator Equations:
gen_oplus3_0(0) ⇔ hole_oplus1_0
gen_oplus3_0(+(x, 1)) ⇔ oplus(hole_oplus1_0, gen_oplus3_0(x))
gen_otimes:1':+'4_0(0) ⇔ 1'
gen_otimes:1':+'4_0(+(x, 1)) ⇔ +'(1', gen_otimes:1':+'4_0(x))
The following defined symbols remain to be analysed:
*'
(9) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol *'.
(10) Obligation:
TRS:
Rules:
*'(
x,
*'(
y,
z)) →
*'(
otimes(
x,
y),
z)
*'(
1',
y) →
y*'(
+'(
x,
y),
z) →
oplus(
*'(
x,
z),
*'(
y,
z))
*'(
x,
oplus(
y,
z)) →
oplus(
*'(
x,
y),
*'(
x,
z))
Types:
*' :: otimes:1':+' → oplus → oplus
otimes :: otimes:1':+' → otimes:1':+' → otimes:1':+'
1' :: otimes:1':+'
+' :: otimes:1':+' → otimes:1':+' → otimes:1':+'
oplus :: oplus → oplus → oplus
hole_oplus1_0 :: oplus
hole_otimes:1':+'2_0 :: otimes:1':+'
gen_oplus3_0 :: Nat → oplus
gen_otimes:1':+'4_0 :: Nat → otimes:1':+'
Generator Equations:
gen_oplus3_0(0) ⇔ hole_oplus1_0
gen_oplus3_0(+(x, 1)) ⇔ oplus(hole_oplus1_0, gen_oplus3_0(x))
gen_otimes:1':+'4_0(0) ⇔ 1'
gen_otimes:1':+'4_0(+(x, 1)) ⇔ +'(1', gen_otimes:1':+'4_0(x))
No more defined symbols left to analyse.